

Biodegradable Polymers Based on Renewable Resources.

IV. Enzymatic Degradation of Polyesters Composed of 1,4:3,6-Dianhydro-D-glucitol and Aliphatic Dicarboxylic Acid Moieties

MASAHIKO OKADA, KENJI TSUNODA, KOUJI TACHIKAWA, KEIGO AOI

Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Received 11 May 1999; accepted 19 September 1999

ABSTRACT: Enzymatic degradation of a series of polyesters prepared from 1,4:3,6-dianhydro-D-glucitol (**1**) and aliphatic dicarboxylic acids of the methylene chain length ranging from 2 to 10 were examined using seven different enzymes. Enzymatic degradability of these polyesters as estimated by water-soluble total organic carbon (TOC) measurement is dependent on the methylene chain length (*m*) of the dicarboxylic acid component for most of the enzymes examined. The most remarkable substrate specificity was observed for *Rhizopus delemar* lipase, which degraded polyester derived from **1** and suberic acid (*m* = 6) most readily. In contrast, degradation by *Porcine liver* esterase was nearly independent of the structure of the polyesters. Enzymatic degradability of the polyesters based on three isomeric 1,4:3,6-dianhydrohexitols and sebacic acid was found to decrease in the order of **1**, 1,4:3,6-dianhydro-D-mannitol (**2**), and 1,4:3,6-dianhydro-L-iditol (**3**). Structural analysis of water-soluble degradation products formed during the enzymatic hydrolysis of polyester **5g** derived from **1** and sebacic acid has shown that the preferential ester cleavage occurs at the O(5) position of 1,4:3,6-dianhydro-D-glucitol moiety in the polymer chain by enzymes including *Porcine pancreas* lipase, *Rhizopus delemar* lipase, and *Pseudomonas sp.* lipase. © 2000 John Wiley & Sons, Inc. *J Appl Polym Sci* 77: 338–346, 2000

Key words: biodegradable polymers; 1,4:3,6-dianhydro-D-glucitol; enzymatic degradation

Correspondence to: M. Okada.

Contract grant sponsor: Ministry of Education, Science, Sports, and Culture of Japan; contract grant number: 8555234 and 11217208.

Journal of Applied Polymer Science, Vol. 77, 338–346 (2000)
© 2000 John Wiley & Sons, Inc.