Department of Bioengineering Sciences

Division of Plant and Animal Production

LAB. OF MICROBES AND PLANT PRODUCTION

Prof. TSUGE, Takashi D. Agr. ttsuge@
Photo4-3-1

Our research focuses on the molecular mechanisms of pathogenic specialization and parasitic fitness in plant pathogenic fungi to elucidate the development of parasitism in plant-fungus interactions. This research is being carried out in relation to its practical application for plant protection from diseases. In particular, we are working on three types of plant pathogenic fungi, Alternaria alternata, Fusarium oxysporum, and F. fujikuroi.

The recent research projects are as follows:

  1. Evolution of host-specific toxin biosynthesis in A. alternata pathogens
  2. Pathogenicity factors of F. oxysporum
  3. Role of gibberellin in pathogenesis of F. fujikuroi
  4. Conidiation of plant pathogenic fungi

Recent Publications:

  1. Takaoka, S., Kurata, M., Harimoto, Y., Hatta, R., Akimitsu, K., Yamamoto, M., and Tsuge, T. (2014). Complex regulation of secondary metabolism controlling pathogenicity in the plant pathogenic fungus Alternaria alternata. New Phytol. 202: 1297-1309.
  2. Tsuge, T., Harimoto, Y., Akimitsu, K., Ohtani, K., Kodama, M., Akagi, Y., Egusa, M., Yamamoto, M. and Otani, H. (2013). Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 37: 44-66.
  3. Imazaki, A., Tanaka, A., Harimoto, Y., Yamamoto, M., Akimitsu, K., Park, P., and Tsuge, T. (2010). Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot. Cell 9: 682-694.
  4. Harimoto, Y., Hatta, R., Kodama, M., Yamamoto, M., Otani, H., and Tsuge, T. (2007). Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata. Mol. Plant-Microbe Interact. 20: 1463-1476.
  5. Imazaki, I., Kurahashi, M., Iida, Y., and Tsuge, T. (2007). Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol. Microbiol. 63: 737-753.
  6. Iida, Y., Ohara, T., and Tsuge, T. (2006). Identification of genes up-regulated during conidiation of Fusarium oxysporum through expressed sequence tag analysis. Fungal Genet. Biol. 43: 179-189.
  7. Ito, K., Tanaka, T., Hatta, R., Yamamoto, M., Akimitsu, K., and Tsuge, T. (2004). Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol. Microbiol. 52: 399-411.
  8. Ohara, T., Inoue, I., Namiki, F., Kunoh, H., and Tsuge, T. (2004). REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics 166: 113-124.
  9. Inoue, I., Namiki, F., and Tsuge, T. (2002). Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14: 1869-1883.
  10. Hatta, R., Ito, K., Hosaki, Y., Tanaka, T., Tanaka, A., Yamamoto, M., Akimitsu, K., and Tsuge, T. (2002). A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161: 59-70.

LAB. OF BIODIVERSITY AND PLANT PRODUCTION

  FAX: +81-561-38-4473
Assoc. Prof. DOI Kazuyuki Ph. D (Agronomy) kdoi@
Asst. Prof. NISHIUCHI Shunsaku Ph. D (Agronomy) s_nishi@
Photo4-3-2
The plot for rice nested association mapping population. The population consists of >2000 lines from >20 cross combinations and all lines are genotyped by using NGS. Genotype (DNA) and trait information are combined and statistically analyzed for discovering useful genes.

Our research focuses on the plant genetic diversity, the interactions betweenplant and their environments, and the application of our research findings to improve agricultural productivity and raise labor efficiency, especially in rice and its production. The genomic sequence of rice greatly facilitated the molecular cloning of rice genes, discovered from both mutants and naturally occurring variation. This enabled us to know the genetic variation in the nucleotide sequence level. Our target is to develop genetic methods and materials for discovering and utilizing the potential useful genes hidden in germplasm collections. Recently we are interested in the use of next-generation DNA sequencer and field informatics (small devices for data correction) for large-scale genetic analysis.

Recent Publications:

  1. Kurokawa Y., T. Noda, Y. Yamagata, R. Angeles-Shim, H. Sunohara, K. Uehara, T. Furuta, K. Nagai, K.K. Jena, H. Yasui, A. Yoshimura, M. Ashikari and K. Doi (2015) Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Sci. doi:10.1016/j.plantsci.2015.09.008
  2. Shiono K., M. Ando, S. Nishiuchi, H. Takahashi, K. Watanabe, M. Nakamura, Y. Matsuo, N. Yasuno, U. Yamanouchi, M. Fujimoto, H. Takanashi, K. Ranathunge, R. Franke, N. Shitan, N.K. Nishizawa, I. Takamure, M. Yano, N. Tsutsumi, L. Schreiber, K. Yazaki, M. Nakazono and K. Kato (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant Journal, 80: 40-51
  3. Wada, T., H. Yasui, T. Inoue, M. Tsubone, T. Ogata, K. Doi, A. Yoshimura and Y. Matsue (2013) Validation of QTLs for eating quality of japonica rice ‘Koshihikari’ using backcross inbred lines. Plant Prod. Sci. 16: 131-140.
  4. Nishiuchi S., T. Yamauchi, H. Takahashi, L. Kotula and M. Nakazono (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 2.
  5. N. Takano-Kai, K. Doi and A. Yoshimura (2011) GS3 participates in stigma exsertion as well as seed length in rice. Breed. Sci. 61: 244-250.
  6. A. Yoshimura, H. Nagayama, Sobrizal, T. Kurakazu, P.L. Sanchez, K. Doi, Y. Yamagata and H. Yasui (2010) Introgression lines of rice (Oryza sativa L.) carrying a donor genome from the wild species, O. glumaepatula Steud. and O. meridionalis Ng. Breed. Sci. 60: 597-603.
  7. D. Fujita, K. Doi, A. Yoshimura and H. Yasui (2010) A major QTL for resistance to green rice leafhopper (Nephotettix cincticeps Uhler) derived from African rice (Oryza glaberrima Steud.). Breed. Sci. 60: 336-341.
  8. M. Ikeda, Y. Hirose, T. Takashi, Y. Shibata, T. Yamamura, T. Komura, K. Doi, M. Ashikari, M. Matsuoka and H. Kitano (2010) Analysis of rice panicle traits and detection of QTLs using an image analyzing method. Breed. Sci. 60: 55-64.
  9. Y. Yamagata, E. Yamamoto, K. Aya, K.T. Win, K. Doi, Sobrizal, T. Ito, H. Kanamori, J. Wu, T. Matsumoto, M. Matsuoka, M. Ashikari, A. Yoshimura (2010) Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc. Natl. Acad. Sci. U.S.A. 107: 1494-1499.
  10. N. Takano-Kai, H. Jiang, T. Kubo, M. Sweeney, T. Matsumoto, H. Kanamori, B. Padhukasahasram, C. Bustamante, A. Yoshimura, K. Doi and S. McCouch (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182: 1323-1334.

LAB. OF ANIMAL PRODUCTION SCIENCE

  FAX: +81-561-38-4473
Prof. OHKURA, Satoshi D. Agr. saohkura@
Des. Asst. Prof. MORITA, Yasuhiro D.V.M. ymorita@
Photo4-3-4

The goal of our research is to reveal the regulatory mechanisms of reproductive functions in domestic animals (goats and cattle), and to utilize the basic knowledge for farm animal production. The control mechanism of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) secretion in female animals is our main interest. We currently focus on the following research projects using a multidisciplinary approach:

  1. Neuroendocrine mechanism regulating pulsatile GnRH release in ruminants
  2. Physiological role of kisspeptin/neurokinin B/dynorphin in the control of reproduction in ruminants

The Laboratory is located in the Togo Filed (The University Farm), Field Science Center, 15 km east of the Higashiyama Main Campus.

Recent Publications:

  1. Tanaka, T., Ohkura, S., Wakabayashi, Y. and Okamura, H. (2012) Peripherally administered kisspeptin-10 stimulates GnRH neurosecretion into the hypophyseal portal circulation in goats. Small Ruminant Research 105, 273-276.
  2. Matsuda, F., Torii, Y., Enomoto, H., Kuga, C., Aizawa, N., Iwata, Y., Saito, M., Imanishi, H., Shimomura, S., Nakamura, H., Tanaka, H., Iijima, H., Tsutsui, H., Tanaka, Y., Nishiguchi, S. (2012) Anti-interferon-α neutralizing antibody is associated with non-response to pegylated interferon-α plus ribavirin in chronic hepatitis C. Journal of Viral Hepatitis, DOI: 10.1111/j.1365-2893.2012.01598.x.
  3. Matsuda, F., Inoue, N., Manabe, N. and Ohkura, S. (2012). Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. Journal of Reproduction and Development 58 44-50.
  4. Matsuyama, S., Ohkura, S., Mogi, K., Wakabayashi, Y., Mori, Y., Tsukamura, H., Maeda, K.-I., Ichikawa, M. and Okamura, H. (2011) Morphological evidence for direct interaction between kisspeptin and GnRH neurones at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinology 94, 323-332.
  5. Oishi, S., Misu, R., Tomita, K., Setsuda, S., Masuda, R., Ohno, H., Naniwa, Y., Ieda, N., Inoue, N., Ohkura, S., Uenoyama, Y., Tsukamura, H., Maeda, K.-I., Hirasawa, A., Tsujimoto, G. and Fujii, N. (2011) Activation of neuropeptide FF receptors by kisspeptin receptor ligands. ACS Medicinal Chemistry Letters 2, 53-57.
  6. Matsuda, F., Inoue, N., Goto, Y., Maeda, A., Cheng, Y., Sai, T., Gonda, H., Sakamaki, K. and Manabe, N. (2011) Expression and function of apoptosis initiator FOXO3 in granulosa cells during follicular atresia in pig ovaries. Journal of Reproduction and Development 57, 151-158.
  7. Wakabayashi, Y., Nakada, T., Murata, K., Ohkura, S., Mogi, K., Navarro, V.M., Clifton, D.K., Mori, Y., Tsukamura, H., Maeda, K.-I., Steiner, R.A. and Okamura, H. (2010). Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. Journal of Neuroscience 30, 3124-3132.
  8. Tomikawa, J., Homma, T., Tajima, S., Shibata, T., Inamoto, Y., Takase, K., Inoue, N., Ohkura, S., Uenoyama, Y., Maeda, K.-I. and Tsukamura, H. (2010). Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biology of Reproduction 82, 313-319.
  9. Ohkura, S., Uenoyama, Y., Yamada, S., Homma, T., Takase, K., Inoue, N., Maeda, K.-I. and Tsukamura, H. (2009) Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides 30, 49-56.
  10. Ohkura, S., Takase, K., Matsuyama, S., Mogi, K., Ichimaru, T., Wakabayashi, Y., Uenoyama, Y., Mori, Y., Steiner, R.A., Tsukamura, H., Maeda, K.-I. and Okamura, H. (2009). Gonadotropin-releasing hormone pulse generator activity in the hypothalamus of the goat. Journal of Neuroendocrinology 21, 813-821.
up